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In networked virtual reality (VR), user behaviors, individual differences, and group dynamics can serve
as important signals for future speech behaviors, such as who the next speaker will be and the timing of
turn-taking behaviors. The ability to predict and understand these behaviors offers opportunities to provide
adaptive and personalized assistance, for example helping users with varying sensory abilities navigate
complex social scenes and instantiating virtual moderators with natural behaviors. In this work, we predict
turn-taking behaviors using features extracted based on social dynamics literature. We discuss results from a
large-scale VR classroom dataset consisting of 77 sessions and 1660 minutes of small-group social interactions
collected over four weeks. In our evaluation, gradient boosting classifiers achieved the best performance, with
accuracies of 0.71–0.78 AUC (area under the ROC curve) across three tasks concerning the “what”, “who”, and
“when” of turn-taking behaviors. In interpreting these models, we found that group size, listener personality,
speech-related behavior (e.g., time elapsed since the listener’s last speech event), group visual attention (e.g.,
the group’s head orientation towards the speaker), and the listener and previous speaker’s head pitch, head
y-axis position, and left hand y-axis position more saliently influenced predictions. Results suggested that
these features remain reliable indicators in novel social VR settings, as prediction performance is robust over
time and with groups and activities not used in the training dataset. We discuss theoretical and practical
implications of the work.
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1 Introduction
Effective and organized social interactions require its social actors to accurately infer speak-
ing intention and take turns accordingly. In most platforms for facilitating computer mediated-
communication (CMC), users retain a high level of autonomy over when and how they speak,
utilizing features such as the muting and unmuting button during videoconferencing. However,
along with the benefits of user control comes the responsibility for individuals to correctly infer
social group dynamics. Such inferences can be difficult to navigate as users utilize digital plat-
forms such as video conferencing and social virtual reality (VR), where the level of immersion and
representation of users (e.g., nonverbal behavior, avatar appearance) can differ from one another
[1, 103]. In immersive social interactions, differences in avatar representation and characteristics
of social VR platforms can yield adverse outcomes such as unwanted overlap in speech [9, 115],
lack of control for users with physical disabilities [68], misperceived and absence of nonverbal cues
[68, 76], and difficulty gauging the end of speaking turns [76, 115]. For users with visual and audio
disabilities, it can also be challenging for them to engage in seamless interactions based solely off
of perceptual and auditory feedback [4, 56]. Paradoxically, as immersive communication evolves to
be hardware-agnostic, with users interacting across traditional screen devices and mixed-reality
headsets [87], the mismatch in social cues delivered and perceived by users across different devices
present further complications for users to navigate socially.

Being able to predict user intentions for actions such as turn taking can alleviate these challenges
through real-time interventions and training. Social VR platforms can implement personalized
assistance for users who are struggling to interpret nonverbal cues under technological constraints
(e.g., joining large meetings though audio feed) or are different in physical abilities (e.g., auditory
and visual abilities). This assistance can also benefit populations with medical conditions such as
autism and ADHD that inhibit their ability to accurately interpret nonverbal behaviors [26, 33].
Relatedly, understanding what behavior precedes turn taking can be useful in training practitioners
such as educators and healthcare workers to better navigating social settings. For example, by
training early-career practitioners to recognize nonverbal cues and individually characteristics
influencing speaking intentions, they can be better equipped to navigate social situations.

In more structured settings such as classrooms and focus groups, knowing who will likely speak
next and what nonverbal cues precede speech can improve social dynamics. For one, practitioners
who need to monitor multiple virtual sessions simultaneously, inevitably missing nonverbal and
verbal cues, can leverage turn-taking predictions to remain informed of the social dynamics and
better facilitate group conversations. These practitioners can also instantiate virtual agents to
moderate social VR scenes with natural nonverbal behaviors that do not cut off current speakers
and more broadly design mechanisms for smoothly guiding the conversations. Failure to accurately
infer social dynamics can yield unwanted interruptions and lower the perceived ease of use of these
intelligent systems [67]. As such, we argue that it is important to study whether we can robustly
predict virtual turn-taking behaviors and how nonverbal and verbal behaviors as well as individual
and group characteristics influence turn-taking predictions.
In this work, we investigated turn-taking behaviors in VR and leveraged the medium’s fine-

grain tracking data on motion and verbal behaviors. Using the VR motion data, researchers have
implemented pipelines for deriving features such as head movement [70] and gaze [1], both of
which have been previously useful for predicting speech behaviors in face-to-face social interactions
[44, 45]. As such, our first research question considers whether it is possible to predict turn taking.

• Research Question 1 (RQ1): Can we predict turn-taking behaviors in VR open-ended group
activities from features extracted from motion tracking data, speech-related behavior, and
individual and group differences?
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Building on this, we leveraged VR to place individuals into varying virtual spaces and studied
social dynamics across groups, social activities, and spatial contexts over time. Studying diverse
social interactions at scale is important as building models that are robust to unseen groups,
activities, and time suggests higher practicality and reliability. Concretely, our second research
question concerns generalizability.

• Research Question 2 (RQ2): How is turn-taking behavior prediction performance affected
when evaluated on groups, activities, and time not seen in training?

Finally, we interpreted the predictive models. Analyzing how features predict turn taking can
deepen our understanding of virtual social dynamics, allowing future researchers to benchmark
against face-to-face interactions. This understanding can also help practitioners build more efficient
models with curated features and compose social groups exhibiting certain turn-taking behaviors.

• Research Question 3 (RQ3): How are the extracted features related to turn-taking predictions
and performance? Specifically, what features are strongly related to performance, and how
are they associated with turn-taking predictions?

To answer these questions, we built models predicting speech dynamics, focusing on three tasks
that capture the “what”, “who”, and “when” of turn-taking behaviors. We formulated features based
on tracking data and individual and group characteristics based on social dynamics literature. We
evaluated performance across 77 sessions and 1660 minutes of open-ended VR group discussions
spanning four weeks, each with three to four university students. Notably, we found that gradient
boosting classifiers achieved the best accuracies, predicting turn transitions and identifying the new
speaker with 0.75–0.78 AUC (i.e., area under the ROC curve), and differentiating between moments
immediately preceding turn transitions and those sampled at prior moments with accuracies of
0.71–0.72 AUC. These results demonstrated that we were able to predict turn-taking behaviors
with accuracies considerably higher than prediction by chance (i.e., 0.50 AUC) and highlighted the
potential non-linear relationships and interactions between extracted features.
Additional feature analyses revealed the importance of listener personality, group size, speech-

related behavior (e.g., preceding speaker sequence), group visual attention, head pitch and y-axis
position, and left hand y-axis position. Our models showed comparable results when evaluated on
time, activities, and groups not seen during training, which demonstrated the reliability of these turn-
taking indicators in novel social settings. From these results, we highlight their theoretical relevance
and outline practical implications for how practitioners can leverage behavioral predictions to
facilitate effective VR social interactions.
In summary, we make the following contributions. First, we formulated features based on

social dynamics literature and leveraged both the VR tracking data and individual and group
characteristics. Using a large-scale VR dataset with 1660 minutes of open-ended activities collected
over four weeks, we then demonstrated the feasibility and robustness of predicting VR turn-taking
behaviors. Finally, through interpreting how features influence model performance and prediction
probabilities, we present theoretical and practical insights and highlight the potential of our work
for intervention, support, and training.

2 Related Work
2.1 Nonverbal Behavior in Social Interactions
Nonverbal behavior offers insights into social dynamics. Gaze, for example, is related to action
patterns [53] and attention [57, 97], and provides important signals to understanding dyadic
collaborations [5, 48], user intention and coordination [3], learning outcomes [86], conversational
attention [108], and social engagement [79]. Gesture and body orientation can influence the sense
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of feeling addressed by conversation partners [77], while proxemics, body orientation, and gaze,
can be effective in predicting one’s intention of joining social groups [12].
It is then unsurprising that nonverbal communication makes up a key component of virtual

interactions, for which social VR offers additional benefits compared to video conferencing. By
tracking the users’ eyes, heads, and hands, VR systems render avatars that accurately convey
nonverbal cues such as interpersonal distance and gaze, fostering social interactions that are
perceived positively and comparable to face-to-face interactions [68, 100]. Communication through
nonverbal behaviors such as bodily and facial gestures induce more positive dyadic interactions in
VR, with these cues also being predictive of interpersonal attraction [83]. Using motion data, VR
social interactions can also be augmented, for example through increasing mimicry [8, 89, 106]
and transforming gaze and interpersonal distance [91, 92, 111, 113]. With VR placing users in
controllable virtual environments, it is also possible to examine nonverbal behavior longitudinally
[70, 71]. Works highlighted how nonverbal behavior changes over time – users looked at others
more and their interpersonal distance increased [70], and user identifiability lowered with greater
temporal delay between training and testing sessions [71].
VR tracking data also enables fine-grain analyses on synchrony [73, 105], self-efficacy and

learning [88], physiological responses [66], classroom discourse [102], interpersonal distance
[21, 70], context [35], design behaviors [112], and user identification [71, 72, 74, 75, 78]. Particularly
relevant to our work is the research of DeVeaux et al. [21]. The authors extracted linguistic patterns
from transcripts and notably found a positive correlation between the use of impersonal pronouns
and the median interpersonal distance. This research highlighted the importance of considering
language use to study VR affordances and the potential of leveraging nonverbal behavior to uncover
psychological nuances that surveys fail to capture. Key distinctions between their work and ours are
their focus on the nonverbal behavior of interpersonal distance, linguistic styles, and session-level
analyses. In contrast, we studied turn-taking behaviors and focused on predicting them at moments
within sessions. Beyond interpersonal distance, we also included other nonverbal features (e.g.,
egocentric motion). One other distinction lies in the VR activities analyzed: while DeVeaux et al.
[21] studied instructor-led discussions collected during a university course in Fall 2021, we focused
on topen-ended activities recorded a year later through the same course.

We contribute to past works by predict turn-taking behaviors through VR motion data. Findings
on changes in nonverbal behaviors over time [70, 71] emphasized the need to study social behaviors
through a longitudinal lens and across multiple sessions. These insights motivated our examination
of turn-taking predictions across unseen weeks, groups, and activities.

2.2 Modeling Human Behavior and Individual- and Group- Level Differences using
Tracking Data

Besides using tracking data to understand human behaviors, monitoring user motion, often un-
obtrusively, can further enable interventions and assessments. For example, as smartphone data
such as touch and typing behaviors [55, 109] and audio, textual, and video data [52] are predic-
tive of personality traits and affective states, one can construct personalized experiences based
on the user’s current behaviors. Another example involves monitoring gaze to assess cognitive
load, and using this information to facilitate adaptations of mixed reality interfaces [62]. Recently,
researchers also built models for predicting team viability using online team text conversations
and demonstrated the potential of using automated features for assessments and intervention [16].
Others proposed using individual and social behaviors to model purchase decisions for e-commerce
recommendations [118] and job burnouts for early-stage interventions [116].

Similarly, we see opportunities in predicting VR speech behaviors for intervention and assistance.
Fortunately, though humans can struggle to infer speaker behavior [39], research that leverages
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tracking data for speech behavior predictions has shown greater promise. Works looked to speech
sequences [85], mouth and head motion [43, 44], respiration [46], gaze behavior [45, 58], and more
broadly user motion [17] as predictors when modeling speech behavior. Notably, these works have
found that markov models were effective in predicting the next speaker based on the two preceding
speakers [85] and that support vector machines leveraging features on gaze transition patterns are
predictive of turn-changing characteristics [45].

Unlike the social scenes examined in previous studies, where users completed a single or series
of similar tasks [17, 45] and either stood in fixed positions [58] or remained seated [17, 45], VR
social interactions are diverse in activities and typically involve less constraints on movement in
the physical and virtual spaces. This raises the question of whether turn-taking predictions are
possible when there are greater variations in activities and nonverbal cues. Failure to make robust
predictions in these scenarios limits the prospects of intervention and assistance in VR. To address
this, we investigated VR turn-taking behaviors from four weeks of open-ended activities with
little restriction on virtual motion. We contribute by also interpreting how features are related to
turn-taking predictions, highlighting their theoretical and practical significance.

2.3 Social Interactions across Individuals and Groups
Tracking data’s ability to predict individual differences such as personalities and affective states
[47, 52, 55, 109] suggests that individual differences can be used to predict user behaviors. Individual
differences such as gender, age, and personalities are related to how people take up physical and
virtual spaces [27, 41, 42, 80], while personality, public speaking anxiety, and immersive tendencies
of individuals are predictive of user experience and perceived quality of interactive systems[18].

Personality traits, in particular, are related to speech behaviors. For example, conscientiousness
and extraversion are related to basic speech features such as pitch estimate [47]. Extraversion and
neuroticism are also associated with different speech patterns, notably with introverts exhibiting
longer silences between utterances [90]. Introverts and extroverts were also found to speak at
different levels of language abstraction [10] and differ in reaction time when verbally responding to
prompts and questionnaires [59, 84]. Broadly speaking, extraversion, agreeableness, and neuroticism
also correlate with features related to speaking turns, speaking length, and average speaking turn
duration [6, 60].

Broadly speaking, social interactions can vary depending on the characteristics of social groups.
For example, the association between trait dominance—measured as expressed control and prosocial
interpersonal power and influence—and speaking time is influenced by the composition of social
groups, namely whether the group was composed randomly or of extremes (i.e., pairing together the
most and least dominant individuals) [69]. Comparing conversations between dyad and triads, the
presence of an additional listener led to individuals speaking louder in situations with high noise
levels, and listeners orienting their heads more optimally (i.e., rotating their heads to approximately
30 degrees from the speaker) [32].
We rely on past findings to identify features related to personality and group compositions

for modeling turn taking. By studying how these features are related to social behaviors such as
speaking intentions, we explore how individual and group characteristics can help build immersive
tools for facilitating social interactions.

3 Methods
3.1 Recordings of Open-ended Group Social Interactions in VR
We studied the longitudinal VR classroom dataset collected by Han et al. [34], and focused on the
subset collected in Fall 2022 as part of a university course on VR. In it, 146 university students, out of
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Fig. 1. Screenshots of the Open-Ended Group Activities. Students donned VR gear in remote physical locations
but joined together in different virtual environments for weekly group discussions and participated in activities
related to topics on accessibility, avatars, medical, and education.

whom 117 consented, engaged in weekly discussions and responded to open-ended design prompts
in groups of two to four for four weeks. Given our interest in turn taking, we only analyzed VR
sessions with all consenting participants1. The topics of discussion and activities changed weekly,
with themes such as accessibility and education. We detail session activities in Appendix A. Each
week, students gathered in the same groups and used the social VR platform ENGAGE while being
physically remote in their own private spaces. Each student used a Meta Quest 2 headset and two
hand-held controllers to partake in the sessions and was allowed to move around virtually using
smooth translation and teleportation. No teaching staff was present in these sessions, so student
groups recorded the discussion sections using the platform’s recording feature. Figure 1 shows
screenshots from the recorded group activities.
The authors varied the virtual environments (i.e., ceiling height, amount of visible space) to

examine how context influences attitude, nonverbal behavior, and design behavior [35, 112]. This
variation in context allows us to model interactions occurring in diverse virtual spaces, setting it
apart from literature that examined speech behavior in the same physical or virtual environment
[17, 58]. This particular dataset was also well-suited for our purpose given its open-ended activities,
which fostered more natural interactions compared to the instructor-led sections in the rest of the
dataset. While previous research have examined language use using the data collected in Fall 2021
[21, 22], we are the first to use the Fall 2022 data to examine turn-taking behaviors of open-ended
group activities.

Given our interest in group interactions, we filtered out moments and sessions with two students.
For predicting turn-taking behaviors, looking at groups larger than two also makes the problem
nontrivial. Our final dataset consisted of 77 VR sessions collected from 26 groups and 100 unique
students. Out of the 77 sessions, 35 were three-person discussions, and 42 were of four people.

1A research personnel not part of the teaching staff randomly assigned students into groups and maximized the number of
groups with all consenting students. This ensured that students received comparable learning experience as the teaching
staff was blinded to the consenting status, while also allowed researchers to examine fully-consenting group interactions.
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During data collection, some participants missed discussions, leading to a high number of three-
person discussions. Some sessions were dropped due to technical difficulties such as software
updates and incomplete recordings. The dataset aggregated a total of 1660.60 minutes of tracking
data, with each session taking on average 21.57 minutes (SD=6.44).
The recording files collected several forms of user and session data, namely that of the scene,

user motion, and audio. Since we wanted to extrapolate turn-taking behavior insights that are
generalizable across social platforms and social settings, we focused on encoding information
related to user motion and audio, which is logged at 30 Hz. Motion data consisted of the position
(i.e., x, y, z) and orientation (i.e., roll, pitch, yaw) of the user’s headset, two controllers, and the
“root”. The “root” tracks the user’s global position and orientation within the virtual environment,
while the headset and controllers are tracked within the coordinate system dictated by the “root”.
From the tracked motion, we can derive information regarding a user’s egocentric behavior as well
as those related to other users. The audio information is recorded both through audio files and a
floating-point value between 0 and 1 representing volume.

3.2 Categories of Turn-Transition Behaviors
3.2.1 Pre-processing Speech Events. We began by identifying all speech events by labeling Inter-
Pausal-Units (IPU) [54], defined as the stretches of speech activity by a single speaker. Using the
audio tracking data, we determined users as actively speaking when their speech volume is greater
than 0.1. To reduce noise from short pauses between speaking activities, we joined adjacent speech
events of the same user when the gap between them is within 0.5s. The threshold of 0.5s follows
prior literature that found the average pause duration during read speech, interviews and public
presentations to be between 0.38 to 0.53 seconds [15, 63].

For each session recording, we proceeded to determine the main speaker by first labeling users
who are the sole speaker during speech events as the main speaker. When there are multiple
speakers, we implemented the following labeling scheme. To start, we eliminated speech events
that are completely overlapped by another speech event. Then, we assign the main speaker as the
speaker who ends their speech event last. The start time of the new main speaker is marked as the
moment the previous main speaker finished speaking. We used Python for extracting IPUs and
assigning main speakers.

3.2.2 Defining and Labeling Turn-transition Behaviors. From the labeled main speakers, we ex-
tracted four types of turn-transition behaviors following closely the categorizations used by Jokinen
et al. [49]: clean turn taking, overlap turn taking, backchanneling, and continuing speech. These
categories provide a formal framework for us to examine turn-taking behaviors. Upon obtaining
the labels, we removed data points associated with speech events shorter than 323 milliseconds (i.e.,
the average duration for enunciating fast words found in [101]) to filter out noise. We used Python
for processing the audio input. Figure 2 shows categorization of each of the categories based on an
example audio input. Table 1 shows the categories’ summary statistics.2

• Clean Turn Taking. Clean turn taking occurs whenever the main speaker has changed and
that there was no overlapping between the previous and new speaker turns. The start of
a clean turn taking event was marked as the beginning of the new speaker’s speech event.
Figure 2b-1 shows examples of these behaviors.

• Overlap Turn Taking. As shown in Figure 2b-2, overlap turn taking occurs whenever the
main speaker changes and the two speech events overlap. In other words, the start of the

2A repository with code used for labeling the four categories is available at github.com/pwang1230/turntaking-wang-2025.
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Fig. 2. Categorization of Turn-Transition Behaviors based on Example Raw Audio Input. Each row represents
a unique user in the VR group discussion session. (a) shows example of speech event pre-processing and (b)
shows subsequent behavioral labeling. In (a-2), the main speaker is labeled with black-colored segments. In
(b-1)–(b-4), the start of each turn-transition behavior is denoted by a vertical line and its duration shaded in
with the color associated with the turn-transition behavior. The speech utterances plotted are based on a
recorded VR session and are further edited to improve visual clarity (e.g., adjusting speech events in close
proximity).

Table 1. Summary Statistics of Turn-Transition Categories. The table presents the count of
labels for each category by week and their sum across all four weeks. In parenthesis, we report
the frequency of categories, where the unit is occurrences per minute across all sessions.
Notably, the frequencies and counts of clean turn taking and continuing speech exceed that
of overlap turn taking and backchanneling.

Week 1 Week 2 Week 3 Week 4 Total

Clean Turn Taking 1675 (4.42) 2386 (4.71) 1712 (5.12) 2149 (4.87) 7922 (4.77)
Overlap Turn Taking 622 (1.64) 939 (1.86) 771 (2.30) 904 (2.05) 3236 (1.95)
Backchanneling 571 (1.51) 947 (1.87) 754 (2.25) 771 (1.75) 3043 (1.83)
Continuing Speech 1866 (1.12) 2446 (4.83) 1600 (4.78) 2292 (5.20) 8204 (4.94)

speech event of the new speaker precedes the end of the previous speech event. We again
marked the start of a turn taking event as the beginning of the new speaker’s speech event.

• Backchanneling. We determined backchanneling by checking for instances when a non-
main speaker began and ended their speech event without ever being the main speaker. The
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start of a backchanneling event is labeled as the start of the speech event of the non-main
speaker. We show examples of backchanneling in Figure 2b-3. One noteworthy scenario
to this labeling scheme is when the non-main speaker’s speech event covers a change in
the main speaker. As shown in Figure 2b-3, specifically the final backchanneling event by
the bottom user, the main speaker changed during the speech event. Since the bottom user
was never labeled the main speaker during their speech event, we labeled this instance as
backchanneling.

• Continuing Speech. Continuing speech is similar to the scattered contribution category
proposed by Jokinen et al. [49]. In their formulation, scattered contributions are defined as
two adjacent speech instances of the same speaker being spaced less than 200ms apart, while
those that are further apart are considered sequences of turns by the same speaker. Since
we are interested in understanding how and when turn transitions take place (i.e., changes
in speakers), we combined these two scenarios under the broader category of continuing
speech. More concretely, we label continuing speech by first locating instances of adjacent
speech events of the same user and then marking the start of the later speech event as the
beginning of the turn-transition behavior. Figure 2b-4 shows instances of continuing speech
behaviors.

3.3 Feature Selection
We formulated features based on prior literature. As reviewed in Section 2, user motion, indi-
vidual and group differences, and verbal behaviors are predictive of user intentions and social
dynamics. Past works have also shown that information relating to the current speaker [17] and
their relationship with listeners [44, 45] offer insights to speech behaviors. Importantly, although
our dataset varied the virtual spatial context, we chose to not encode these differences because
they were manipulated at two distinct levels (i.e., high and low for ceiling height, large and small
for amount of visible space). Encoding this study-driven parametrization into predictive models
will not generalize to new spatial contexts. Instead, we treat these spatial variations as stimulus
sampling to enhance external validity [51, 114].
Formally, we extracted features related to listeners, previous speakers, the dyadic relationship

between listeners and speakers, their relationship with the group, and verbal behaviors. We further
encoded features related to two users: a user of interest which we refer to as the main user, and the
previous speaker, which we refer to as the reference user. When extracting motion-related features,
we examined the tracking data of 1-second windows at moments prior to the start of turn-transition
behaviors. The 1-second window size is determined based on piloting and aligns with past literature
predicting speaking intentions [17]. Table 2 presents a summary of extracted features.

3.3.1 Speech-Related Features. The first feature group is related to speech behaviors, as they were
shown to be predictive of who the next speaker is [85]. Following Parker [85], we encoded speech
sequences leading up to the start of the examined window. For this, we begin at the timestamp at
the start of the examined window, and trace backwards each time the main speaker changes, at
which point we increment the turn index by 1. If the main speaker for a given turn is the main user,
we assign the feature value at the corresponding turn index “u”. If we encounter a new speaker at a
preceding turn, we assign the feature value a new symbol representing that user (e.g., “a”, “b”, “c”).
For turns with a speaker who we had already created a symbol for, we assigned their symbol to the
feature value. In our setup, we encoded 10 preceding speaker indices, assigning “NA” when there
were no more changes in main speakers preceding the last encoded turn. In practice, we processed
the speech sequence features at each turn index using one-hot encoding.
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Table 2. Summary of Features Selected for Prediction Tasks. We present features by their groups, namely
those related to speech, individual and group differences, egocentric motion, dyadic relationship, and
group relationship.

Feature Group Description of Features Number of Features1

Speech-Related [85] Prior speech sequences 10 preceding speaker indices
Number of speaking turns before the main user’s last
speech event

1

Time before the end of the main user’s last speech
event

1

Whether the main user has spoken before 1
Individual- and Group-
Level Differences
[6, 32, 47, 60, 69, 90]

Main user big-5 personality 5
Reference user big-5 personality 5
Big-5 personality averaged across all users 5
Group size 1

Egocentric Motion2
[6, 17, 44, 70, 72]

Position and orientation of a user’s headset and two
hand-held controller, where the user is either themain
user or reference user

3 tracked points × 6 DOFs × 3
summary stats. × 2 meas. × 2
users = 216

Dyadic Relationship
[17, 45, 49, 58]

Direct visual attention from the main user to the ref-
erence user

3 summary stats. × 2 meas. = 6

Direct visual attention from the reference user to the
main user

3 summary stats. × 2 meas. = 6

Interpersonal distance between the main user and
reference user

3 summary stats. × 2 meas. = 6

Visual shared space calculated between the main user
and reference user

3 summary stats. × 3 dists. × 2
meas. = 18

Group Relationship
[17, 45, 49, 58]

Direct visual attention from a user to all remaining
users, where the user is either the main user or refer-
ence user

3 summary stats. × 2 meas. ×
2 users = 12

Direct visual attention from all remaining users to a
user, where the user is either the main user or refer-
ence user

3 summary stats. × 2 meas. ×
2 users = 12

Interpersonal distance between a user and all remain-
ing users, where the user is either the main user or
reference user

3 summary stats. × 2 meas. ×
2 users = 12

Visual shared space calculated between a user and all
remaining users, where the user is either the main
user or reference user

3 summary stats. × 3 dists. × 2
meas. × 2 users = 36

1 3 Tracked points refer to the headset and two controllers; 6 degrees of freedom refer to x, y, and z position and the roll, pitch, and yaw
orientation; 3 summary statistics refer to the minimum, maximum, and average across the examined time period; 2 measurements refer
to the raw value and first order derivative (i.e., velocity); 3 distances refer to 1, 5, and 10 meters. DOFs = degrees of freedom; stats. =
statistics; meas. = measurements; dists. = distances.
2 Due to the body-space transformation and centering operations, the total number of non-trivial features for egocentric motion is 198.

We introduced three additional features to describe the main user’s verbal behaviors: (1) the
number of speaking turns before the main speaker’s last speech event, (2) the duration of time
before the end of the main user’s last speech event, and (3) whether the main user has spoken
before during the current session. Deriving these features for the reference user was unnecessary
since that user is typically set to the previous speaker.
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3.3.2 Individual- and Group- Level Features. Drawing from works showing correlations between
speech behaviors and personalities and group compositions [6, 32, 47, 69, 90], we formulated features
based on individual and group characteristics. Specifically, we encoded the Big-5 personality traits
[30] of the main and reference users, and group average. The authors of the dataset measured Big-5
personality using the ten item personality measure (TIPI) [30], with each personality trait ranging
between 1–7 and calculated as the mean of two items.

3.3.3 Egocentric Motion Features. Egocentric motion features capture the pose and motion of
individuals. For this, we extracted egocentric motion features from both the main and reference
users. For each user, we extracted the position (i.e., x, y, z) and orientation (i.e., pitch, yaw, roll) of a
user’s headset and two controllers by both their raw values and velocities. From the raw values and
velocities across the 1-second window, we summarized each of the 6 degrees of freedom by their
average, minimum, and maximum. We transformed the features corresponding to the raw values
into the body-space coordinate system proposed in Miller et al. [71] and centered the horizontal
coordinates (i.e., x, z) such that the individual’s head position is at the origin of the horizontal plane,
as opposed to their global coordinates in the virtual space. The rationale behind this transformation
is to encode the egocentric poses by mapping the raw coordinates and orientations to a coordinate
system based on the individual’s forward head direction. This allows the features to encode poses
even when individuals move around physical or virtual environments.
When calculating the velocity of positions and orientations, we derived velocities from raw

values after transforming the original values into the body-space coordinates without the centering
operation. Not centering the coordinates based on the head position allows the features to retain
information of the user’s head position velocities in the horizontal plane. When encoding head yaw,
we did not calculate its velocity based on the transformed values but instead on the yaw angles
prior to any transformations. This procedure preserves information on how a user rotates their
head in the yaw axis, which body-space transformation loses by reorienting based on head yaw.

3.3.4 Dyadic Relationship Features. The next feature group describes the dynamics between the
main and reference users. Similar to prior work [17, 45, 49], we extracted the direct visual attention
(i.e., gaze direction approximated using head orientation) from the main user to the reference
user, and vice versa. Specifically, we determined user A’s direct visual attention towards user B by
calculating the angle between user A’s forward head orientation in the yaw axis and the vector
pointing from user A’s head position to user B’s head position in the horizontal plane. Similar
to the egocentric motion features, we derived the raw values and velocities across the 1-second
window and summarized them by their average, minimum, and maximum. Since users moved
around virtual environments in the dataset, we also encoded interpersonal distance as the distance
between two users’ head position in the horizontal plane.
One characteristic that direct visual attention fails to capture is whether two users are facing

the same direction. For example, if both users’ head orientations are at 90 degrees from the other
user, they could be facing the same direction or have their backs against one another. These two
scenarios can entail different dynamics as users facing the same direction are likely looking at
similar parts of the environment. We therefore introduced a measurement of visual shared space
quantifying how much users’ visual field of views overlap. Concretely, we first drew isosceles
triangles with the vertex connecting the two equal sides of length 𝑣𝑠𝑙 located at the user’s head and
oriented in the head’s forward direction in the horizontal plane. The angle between the two sides
is set to the horizontal field of view of the Meta Quest 2 headset (104 degrees). The raw value of
the visual shared space between two users at distance 𝑙 is defined as the amount of spatial overlap
in𝑚2 of the two triangles drawn with 𝑣𝑠𝑙 = 𝑙 . In simpler terms, this measurement estimates how
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much virtual space the two users share in their field of views, assuming that their visual attention
stretches 𝑣𝑠𝑙 meters. For our setup, we extracted values for 𝑣𝑠𝑙 at 1, 5, and 10 meters.
Using the raw values calculated for direct visual attention, interpersonal distance and visual

shared space, we extracted the raw values and their changes (i.e., velocity) over the sampled
windows and summarized the two measurements into their average, minimum, and maximum.

3.3.5 Group Relationship Features. Finally, we encoded features between a user of interest (i.e.,
main or reference user) with the group. Specifically, we extracted (1) the dyadic direct visual
attention angle from each user of interest to each group member and (2) those from each group
member to that user. Similar to the dyadic relationship features, we calculated the interpersonal
distance between each of the two users with the rest of the group. Finally, we derived the visual
shared space between each dyadic pair between a user of interest and the rest of the group at 𝑣𝑠𝑙 =
1, 5, 10 meters. From the raw values extracted for direct visual attention, interpersonal distance,
and visual shared space across the sampled window, we derived the average value and velocity
for each dyadic pair, grouped them by whether they are related to the main or reference user, and
finally summarized them by their average, minimum, and maximum.

3.4 Turn-Taking Behavior Prediction Tasks
Drawing from past literature on predicting speech behaviors [17, 44, 45, 58, 85], we focused on
three prediction tasks, which capture the “what”, “who”, and “when” of turn-taking behaviors.

• Turn Taking vs. Continuing Speech. The “what” poses the question of whether we
can predict the type of turn-transition behavior. In particular, in line with past research
[45, 49, 58], can we distinguish whether a turn-transition behavior will be a turn-transition
to a new speaker (i.e., turn taking), or a continuing speech from the previous speaker (i.e.,
turn keeping)?

• Next Speaker Prediction. The “who” focuses on predicting who the new speaker is prior to
the start of a turn-taking behavior (i.e., clean turn taking, overlap turn taking). Next speaker
prediction is another common task used in modeling speech behavior [43, 45, 46, 85].

• Timing of Turn-Taking Behaviors. To investigate the “when” of turn-taking behaviors, we
investigate whether we can predict when the next speaker will speak, a task that frequented
past literature [44–46]. Specifically, can we differentiate between moments associated with a
new speaker right before a turn taking event and those sampled before these moments?

3.5 Machine Learning Models
To study RQ1, we predicted the three tasks outlined in Section 3.4 by first extracting the features
in the 1-second windows prior to the start of the turn-transition behaviors. For each task, we built
and compared performance across four predictive models commonly used to predict individual
characteristics and group dynamics [16, 71, 75]: logistic regression, multi-level perceptron (MLP)
classifier, random forest classifier, and gradient boosting classifier. We formulated each task as a
binary classification task and measured prediction performance using the area under the curve
(AUC) of the receiver operating characteristics curve. We implemented all models using Python’s
scikit-learn library [24].
For evaluation, we employed cross-validation similar to [16, 28]3. To start, we partitioned the

data into training and testing and standardized all continuous features. For measuring accuracy, we
reported the performance of models trained on 90% of the data and evaluated on the remaining 10%
(i.e., k-fold ≈ 10). Specifically, we calculated the averages and standard errors of the AUC evaluated
3We conducted an additional analysis that focused on evaluating model performance across sessions, groups, and weeks.
Since the results largely align with our cross-validation evaluations, we include this analysis in Appendix D.
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Table 3. Model Performance (measured as the AUC of the ROC curve) on Predicting
Turn-Taking Behavior vs. Continuing Speech. For metrics using cross validation,
which we denote using the subscript cv, we report the average and standard error
across all folds. An AUC of 0.50 means that the model’s ability to distinguish
between positive and negative samples is no better than random chance. Bolded
numbers denote best performance by metric.

Performance Metrics

Prediction Model Sessioncv Groupcv Weekcv Week 4

Logistic Regression 0.71 (0.01) 0.69 (0.01) 0.70 (0.00) 0.69
MLP Classifier 0.72 (0.01) 0.71 (0.01) 0.71 (0.00) 0.71
Random Forest Classifier 0.77 (0.00) 0.75 (0.01) 0.76 (0.00) 0.76
Gradient Boosting Classifier 0.78 (0.00) 0.77 (0.01) 0.78 (0.00) 0.78

on the testing data across all folds. As a benchmark measurement, we partitioned the data such
that we trained on data from 90% of the sessions and tested was on the remaining 10% (Sessioncv).

We report two additional sets of results evaluating the robustness of models on unseen groups,
activities, and weeks (RQ2). First, we measured performance on unseen groups by partitioning the
data such that we trained on data from 90% of groups and tested on the remaining 10% (Groupcv).
We then quantified performance across unseen weeks using models trained on all but one week’s
data and tested on the remaining week (Weekcv). Finally, we report performance on the final week
after training models on data from the first three weeks. As group activities differed weekly, our
evaluation metric for unseen activities is the same as that for unseen weeks.

4 Results
In this section, we report onmodel performance (RQ1) and their robustness (RQ2) for the prediction
tasks outlined in Section 3.4. Then, we present analyses investigating feature importance and how
the features are related to model predictions (RQ3).

4.1 Predicting Turn-Taking Behaviors
4.1.1 Differentiating between Turn Taking and Continuing Speech. We built models for predicting
whether a speech event was going to be a turn transition or one where the previous speaker will
continue to speak. We compared clean turn taking, and not overlap turn taking, to continuing
speech as there are by definition pauses before both types of turn-transition behaviors. We defined
positive samples as those corresponding to the beginning of turn-taking behaviors and negative
samples as those corresponding to the start of continuing speech behaviors. We chose the upcoming
speaker as a main user for positive samples and a randomly selected user who is not the previous
speaker for negative samples. For both positive and negative samples, the reference user was the
previous speaker. We randomly sampled the dataset to maintain an equal number of positive and
negative samples, which yielded 15844 samples.
We present model performance in Table 3. Notably, gradient boosting classifiers outperformed

other models across all performance metrics, achieving a benchmark accuracy (i.e., Sessioncv) of
0.78 AUC, and 0.77–0.78 AUC across the three remaining metrics. Random forest classifiers achieved
the second highest accuracy on the benchmark metric with a 0.77 AUC, followed by the MLP
classifier at 0.72 AUC, and the logistic regression at 0.71 AUC. When evaluating on unseen groups,
performance accuracies were slightly lower but generally robust across all four models. Compared
to the benchmark metric, models achieve similar accuracies on unseen weeks and activities.
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Table 4. Model Performance (measured as the AUC of the ROC curve) on Next
Speaker Prediction. For metrics using cross validation, which we denote using the
subscript cv, we report the average and standard error across all folds. An AUC of
0.50 means that the model’s ability to distinguish between positive and negative
samples is no better than random chance. Bolded numbers denote best performance
by metric.

Performance Metrics

Prediction Model Sessioncv Groupcv Weekcv Week 4

Logistic Regression 0.73 (0.01) 0.72 (0.01) 0.73 (0.01) 0.75
MLP Classifier 0.72 (0.01) 0.71 (0.01) 0.72 (0.01) 0.74
Random Forest Classifier 0.75 (0.01) 0.74 (0.01) 0.74 (0.00) 0.75
Gradient Boosting Classifier 0.77 (0.01) 0.75 (0.01) 0.77 (0.01) 0.78

Table 5. Model Performance (measured as the AUC of the ROC curve) on the
Timing of Turn Taking. For metrics using cross validation, which we denote using
the subscript cv, we report the average and standard error across all folds. An AUC
of 0.50 means that the model’s ability to distinguish between positive and negative
samples is no better than random chance. Bolded numbers denote best performance
by metric.

Performance Metrics

Prediction Model Sessioncv Groupcv Weekcv Week 4

Logistic Regression 0.61 (0.00) 0.61 (0.00) 0.61 (0.00) 0.60
MLP Classifier 0.63 (0.00) 0.63 (0.01) 0.63 (0.00) 0.61
Random Forest Classifier 0.68 (0.00) 0.67 (0.01) 0.67 (0.01) 0.66
Gradient Boosting Classifier 0.72 (0.00) 0.71 (0.01) 0.71 (0.00) 0.71

4.1.2 Predicting the Next Speaker. We predicted the upcoming speaker of a turn-taking event.
Specifically, we aggregated positive samples by extracting those corresponding to moments at
the beginning of turn-taking events (i.e., clean turn taking, overlap turn taking), where the main
user is set to the upcoming speaker. We then collected negative samples at the same moments,
but with the main speaker set to a user who is neither the upcoming nor the previous speaker.
The reference user is set to the previous speaker for all samples. We randomly resampled negative
labels to balance positive and negative samples, yielding 22316 samples.
Table 4 summarizes our results. Gradient boosting classifier achieved the highest accuracies

across all four performance metrics, with an AUC of 0.77 on the benchmark metric, followed by
the random forest classifier at 0.75 AUC, the logistic regression at 0.73 AUC, and finally the MLP
classifier at 0.72 AUC. All four prediction models were robust when tested on unseen groups and
weeks, with the performance on unseen groups again being lower but comparable to the benchmark
evaluations.

4.1.3 Predicting the Timing of Turn Taking. Finally, we aimed to understand whether we can
differentiate between moments associated with an upcoming speaker right before a turn taking
event and those sampled prior to these moments. We first collected positive samples by extracting
samples corresponding to moments before the start of turn-taking events (i.e., clean turn taking,
overlap turn taking), with the main user set to the upcoming speaker. For negative samples, we
aggregated samples corresponding to moments that were prior to the 1-second window immediately
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Fig. 3. Feature Importance Analysis. Each panel reports the change in AUC of the ROC after shuffling features
across the three prediction tasks for a given feature group. Black dots denote the average drop in accuracy
across three tasks. Features within each panel are ordered in increasing average drop in accuracy from top to
bottom. Lower values (i.e., greater decrease in accuracy) represents higher MDA. For clearer presentation, we
did not plot egocentric features with moderate importance. Bolded features and their corresponding rows
with light blue backgrounds indicate features that are further interpreted in Section 4.3. Diff. = differences;
Ref. = reference user; prev. = previous; IPD = interpersonal distance; attn. = visual attention; lh = left hand; rh
= right hand.

before the start of turn-taking event. For this, we began by sampling moments at windows starting
2, 4, 6, 8, 10, and 12 seconds prior to the start of turn transition events. We then filtered out data
samples for which any speech event had occurred between the earlier moment and the start of the
turn transition event for the upcoming speaker. In other words, the negative samples consisted
only of moments when the upcoming speaker is not preparing to speak. This sampling technique
is similar to Chen et al. [17] as we sampled through a sliding window. For both positive and
negative samples, the reference user is set to the previous speaker at the sampled moment. We
randomly resampled the aggregated data to ensure an equal number of positive and negative
samples, resulting in 22316 samples.

We detail performance results in Table 5, which were lower than those from previous tasks. The
best performing model, the gradient boosting classifier, achieved an accuracy of 0.72 AUC on the
benchmark metric, while the logistic regression model recorded the lowest accuracy of 0.61 AUC
on the same metric. The random forest and MLP classifiers had benchmark accuracies of 0.68 and
0.63 AUC, respectively. Performance on unseen groups, activities, and weeks were robust, with
models reporting slightly lower but similarly accuracies on other cross validation evaluations.

4.2 Feature Importance Analysis
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4.2.1 Mean Decrease in Accuracy Based on Gradient Boosting Classifiers. To understand how
features are related to model performance and predictions (RQ3), we first computed the mean
decrease in accuracy (MDA) for the top performing model (i.e., gradient boosting classifier), a
technique used for probing feature importance in machine learning models [37, 72, 82]. Specifically,
we organized features based on their feature groups and definition, for example splitting up
egocentric motion features by the user, tracked points, and axis of motion. For each task, we built
models used to compute the benchmark cross validation performance (i.e., Sessioncv) and evaluated
them on each testing set with a particular set of features randomly shuffled. This procedure breaks
up any relationship the set of features may have with the model prediction. We then calculated
the average change in the testing AUC across all folds and present them in Figure 3. We omitted
plotting egocentric features with moderate importance, but included all features in Appendix B.

Analysis of speech-related features showed the highest importance on the user’s previous turn
time, followed by prior speech sequence, user turn count, and whether the user has spoken earlier
in the session. For the main user’s previous turn time feature, feature importance for the turn
taking vs. continuing speech task was the highest, followed by the timing prediction and next
speaker prediction tasks. For features on the main user’s turn count and prior speech sequence,
they exhibited the highest importance for models built to predict the next speaker, followed by
the turn taking vs. continuing speech task, andlastly the timing prediction task. Our results on the
individual and group differences features revealed a comparably high importance of the main user
personality, followed by group size, group personality, and lastly the reference user personality.
For egocentric motion features, the top six features were related to the main and reference

users’ head yaw rotation, head y-axis position, and left hand y-axis position. Within the top six
features, feature importance for those related to the main user were in most cases higher for the
timing prediction task compared to other tasks. For dyad relationship features, those related to
direct visual attention had greater importance than those related to the visual shared space and
interpersonal distance, though their change in AUC near zero implies low importance. In terms
of group relationship features, features related to the group’s direct visual attention towards the
reference and main users exhibited greater importance than the remaining features.

4.2.2 Feature Significance Based on Logistic Regression Models. We investigated predictor signifi-
cance of feature groups using logistic regressions. Benefits of studying linear models include their
high interpretability and simplified independence assumption affording well-defined hypothesis
tests for evaluating feature significance [19]. In contrast, recent methods for interpreting more
complex models such as the random forest and gradient boosting classifiers have not addressed
evaluations of feature importance through statistical tests [31, 64, 65]. For this, we grouped features
based on their constructs. Then, for each trained logistic regression, we conducted Wald tests
to evaluate joint linear hypotheses, specifically testing whether all features related to a given
construct significantly contribute to the model. We present the full results in Appendix C but
highlight general trends for the remainder of this section. We evaluated significance at 𝛼=.05.

Specifically, all but one group of speech-related features significantly contributed to model predic-
tion across all three tasks (𝑝s<.046). For individual and group differences features (i.e., personality,
group size), most significantly impacted the tasks of predicting turn taking vs. continuing speech
and next speaker prediction (𝑝s<.020). In contrast, for individual and group differences features, only
features related to the previous speaker’s personality (𝑝<.001) significantly predicted turn-taking
timing. For dyad-related features, visual attention features between the reference and main users
significantly predicted the next speaker (𝑝s<.001) while the interpersonal distance between the
reference and main users was significant in distinguishing between turn taking and continuing
speech behaviors (𝑝=.004). For features related to groups dynamics, all constructs significantly
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predicted turn taking vs. continuing speech (𝑝s<.017). Group features related to visual attention
were also significant in predicting at least one of the two remaining tasks. Finally, for egocentric
features, 18 groups of constructs were significant in predicting turn taking vs. continuing speech
(𝑝s<.035), while only 6 were significant in predicting the next speaker (𝑝s<.027). Notably, all 6 were
related to the main user’s egocentric behavior. For predicting the timing of turn taking, 12 groups
of constructs were significant (𝑝s<.043).

4.3 Feature Interpretation Analysis
To study RQ3, we analyzed how features with high importance are related to predictions of
the best performing models (i.e., gradient boosting classifiers). We selected features within each
feature group with high feature importance based on MDA. Notably, we included features deemed
insignificant in the Wald-tests in Section 4.2.2 for two reasons. First, we interpreted the gradient
boosting classifiers and not the logistic regressions. UsingMDA from the gradient boosting classifers
allowed us to capture insights from features that may lack significance under the assumptions
of a linear model but still contribute non-linearly. Additionally, logistic regressions are sensitive
to collinearity and can complicate assessments of feature significance [23]. Another issue is an
overemphasis on features with small effects given a large sample [104]. By leveraging MDA instead,
we selected features that best reflected their contribution to the best performing models.

In aggregate, we analyzed 56 constructs. For speech-related features, we examined 2 constructs:
the user turn count and user previous turn time. There were 6 constructs related to individual and
group differences: main user personalities and group size. 12 were related to the group relationship,
specifically those capturing the group’s direct visual attention towards the main user and reference
user. The remaining 36 were egocentric motion constructs, namely those describing the head
position in the y-axis, rotation in the yaw axis, and left hand position in the y-axis for the main
and reference users. We did not interpret individual prior speech sequence features as research has
suggested the need to consider the interactions between prior speakers [85].

We interpreted features using partial dependence, a common technique used to interpret machine
learning models such as random forests [7, 29] and gradient boosting classifiers [11, 81]. By
definition, partial dependence measures the marginal effect on model prediction through varying
the values to a feature and calculating the average probability estimates after this procedure. In
our setup, we chose the gradient boosting classifiers trained on the entire dataset and varied each
feature between its [0.05, 0.95] percentile.

4.3.1 Speech-Related Features. Seen in Figure 4a, varying the amount of time and number of turns
to the main user’s previous turn revealed large effects on the probability estimates. Specifically,
the results suggested that listeners who had spoken more recently are more likely to engage in
turn-taking behaviors and be the next speaker (i.e., predicting turn taking vs. continuing speech
and the next speaker). The models also predicted that listeners are more likely to speak at a time
closer to their previous speech activity. Our results on the user turn count feature revealed for the
next speaker prediction task that listeners whose last speaking event occurred at earlier turns are
less likely to become the next speaker.

4.3.2 Individual- and Group- Level Differences. Shown in Figure 4b, for predicting the next speaker
and differentiating between turn taking and continuing speech, listeners with higher values of
extraversion are more likely to be the next speaker. There was little variation in probabilities
estimates when varying main user personalities for predicting the timing of turn-taking. This
suggests that listeners with different levels of Big-5 personalities do not exhibit different patterns in
when they decide to speak. There were weaker but noticeable relationships between the probabilities
estimates and the listener’s consciousness, neuroticism, and openness. For example, for the next
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Fig. 4. Partial Dependence for Selected Features Related to Speech, Individual- and Group- Level Difference,
and Group Relationship. Higher y values denote greater probability estimates for the main user’s speaking
intentions. Raw values are quantified in degrees, and velocities in degrees per second. (a–c) show the partial
dependence of the selected features, with colors denoting the prediction task. Features related to speech, the
main user’s extraversion, and raw values of direct visual attention from the group to the main and reference
users revealed noticeable changes in the average probability estimates across feature values. Ref. = reference
user; ave. = average; max. = maximum; min. = minimum; agree. = agreeableness; consci. = conscientiousness;
extrav. = extraversion; neuro. = neuroticism; open. = openness; attn. = visual attention.

speaker prediction task, the model predicted that listeners reporting a lower level of openness were
less likely to be the next speaker.

4.3.3 Group Relationship. The most salient relationship in the partial dependence plots regarding
group relationships (Figure 4c) were those related to the group’s direct visual attention towards the
previous speaker. Notably, the models predicted that a new speaker is more likely to take over a
previous turn when listeners are looking away from the previous speaker (i.e., larger minimum
and average value for the direct visual attention angle from the group to the reference user). There
is a similar but weaker trend when predicting the timing of turn taking.
The partial dependence plots for the group’s direct visual attention towards a listener revealed

the opposite directionality between prediction estimates and feature values, where a listener is
predicted to be more likely to take over a turn when the remaining group is looking more directly
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Fig. 5. Partial Dependence for Selected Features Related to Egocentric Motion. Higher y values denote greater
probability estimates for the main user’s speaking intentions. Raw values are quantified in degrees, and
velocities in degrees per second. (a–c) show the partial dependence of the selected features, with colors
denoting the prediction task. Notably, results showed the largest visual changes in average probability
estimates when varying (1) the average velocity of the users’ left hand y-axis position, (2) the maximum and
minimum velocities of the users’ head pitch rotation, and (3) the average velocity of the users’ head y-axis
position. Ref. = reference user; ave. = average; max. = maximum; min. = minimum.
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at them (i.e., small maximum and average value for the direct visual attention angle from the
group to the main user). This pattern is, however, less pronounced than the greater variability in
probability estimates exhibited for direct visual attention measurements from the group to the
previous speaker.

4.3.4 Egocentric Motion. Figure 5 presents our findings on egocentric motion features. Shown in
Figure 5a, the feature with the greatest variation in partial dependence for the left hand y-axis
position was the average velocities for both the listener and previous speaker. Notably, the model
used for differentiating between turn taking and continuing speech predicted that previous speakers
who move their left hand upward in the vertical axis (i.e., large positive values in the average y-axis
velocity) are more likely to continue speaking. For listeners, models for all three tasks predicted
that listeners are more likely to speak in moments right after they move their left hand upward
(i.e., large positive values in the average y-axis velocity).

For egocentric features related to head y-axis position, the salient trends were related to
velocities (Figure 5b). To start, the model for the turn-taking timing task predicted that a listener is
more likely to begin speaking if the previous speaker’s head had on average not moved a substantial
amount in either direction in the vertical axis. This was not the case for models for the other two
tasks. On the contrary, all three models predicted that a listener is more likely to begin speaking if
their head had on average moved upward in the y-axis (i.e., large positive values for the average
y-axis velocity). Relatedly, a listener is predicted to more likely speak if their head had at any point
in the sampled window moved quickly upward in the vertical axis (i.e., large positive values for the
maximum y-axis velocity).

Finally, for features related to head pitch rotation, we found distinctive patterns in maximum
and minimum velocities of the pitch rotations for the main and reference users (Figure 5c). We
interpret this as the models finding the extremes of an individual’s head pitch rotation velocities
across the 1-second window more informative than their averages. There were no noticeable trends
in partial dependence for the previous speaker’s head pitch rotation on the next speaker prediction
task. Models for the remaining two tasks predicted that a listener is less likely to speak if the
previous speaker has at any point extensively rotated their head upward, which corresponds to
small negative values for the minimum pitch velocity. The models also predicted that a listener
is less likely to speak if the previous speaker has at any moment within the 1-second window
extensively rotated their head downward (i.e., large positive values for the maximum pitch velocity).
The trends in partial dependence on the listener’s head pitch rotation were opposite to that of the
previous speaker. Namely, all three models predicted a listener is more likely to speak when they
have engaged in substantial downward head rotation (i.e., large positive values for the maximum
pitch velocity) or upward head rotation (i.e., small negative values for the minimum pitch velocity).

5 Discussion
5.1 Practical Implications of Turn-Taking Prediction
5.1.1 Model Selection and Performance. With regards to RQ1, we found that the gradient boosting
classifiers achieved consistently the best performance on all tasks across performance metrics. This
suggests that the relationship between the features and outcome variable is non-linear and that
interactions between features are likely relevant for prediction. Specifically, the models obtained
accuracies of 0.75–0.78 AUC on the tasks of identifying the new speaker and distinguishing between
turn transitions and continuing speech, and had poorer performance on predicting when a new
user will begin speaking with accuracies of 0.71–0.72 AUC. These accuracies are considerably
higher than prediction by chance, are considered to have excellent discrimination between positive
and negative samples [119], and comparable to prior research [17].
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As AUC represents the probability that a random positive sample is rated higher than a random
negative sample [13], there remains room for prediction improvements, albeit limited by the
complexity inherent to social dynamics and VR [20, 68]. To further explore the practical implications
of turn-taking predictions, we present an additional analysis in Appendix E. In it, we consider the
task of predicting continuing speech and turn-taking events and extended the binary classification
problem into amulticlass one. This analysis yielded comparable findings and found that three-person
groups yielded higher prediction accuracy than four-person ones. One possible explanation for the
lower performance in larger groups is the greater unpredictability in larger-group social dynamics.
While there were more four-person discussions than three-person ones in our dataset, greater
complexity in social dynamics may warrant more data for larger group sizes. When modeling and
deploying comparable models in real-world settings, our findings here suggest that practitioners
should sample diverse group sizes during data collection, exercise caution when predicting turn-
taking behaviors for groups whose sizes differ from the training data, and not assume higher
prediction accuracies in smaller groups will translate directly to larger groups.

Additionally, ourmodel accuracies suggest that near-term uses cases should prioritize applications
that either 1) are minimally impacted by potential false labels or 2) build off insights from feature
importance and interpretation. Given the lower performance in predicting turn taking timing,
practitioners should build tools that leverage predictions for who the next speaker is, as opposed to
when they will begin speaking.

Importantly, overall accuracy alone does not capture the full picture to model performance,
for generalizability is critical for practical deployments. In our work, we showed that predictive
performance is robust over time and across unseen groups and activities (RQ2), with accuracies
for evaluations based on unseen groups being slightly lower but comparable to benchmark metrics.
Considering also the diverse group activities and virtual mobility allowed in our dataset, these
results suggest that practitioners can expect robustness across time and unseen activities and
groups when training and deploying predictive models using similar approaches. One possible
explanation for the robustness is the high number of groups and wide range of activities seen
during training allowing models to extrapolate generalizable insights.

5.1.2 Application of Findings. Our findings offer insights for practical applications. For one, for
educators and organizers facilitating group discussions, having a tool for predicting next speakers
can help with moderation (e.g., smoother transition between speakers). As these facilitators may
need to multi-task and monitor multiple sessions [94], such tools can reduce the cognitive load
for interpreting the nonverbal behavior of multiple social scenes concurrently. Another use case
is in facilitating interactions with users joining at different levels of immersion (e.g., audio only,
full body tracking). For example, model that predict and notify audio-only users of the speaking
intentions of immersive users can help them better navigate social scenarios. Conversely, systems
can model nonverbal behaviors from audio-only users and notify fully-immersed users of possible
speaking intentions of audio-only users, thereby addressing the asymmetry in immersion.

Another application is in training user awareness in detecting turn-taking behaviors. One option
is to visually guide users to notice predictive nonverbal features before speaking turns, similar to
immersive training systems [14, 40]. Such training can be beneficial to populations who struggle
socially [26, 33] and professionals in domains such as education and healthcare. Our features analysis
on individual and group differences also offers implications on group composition. Namely, aligning
with works on social dynamics and individual differences [6, 10, 60, 90], practitioners interested in
shaping turn-taking behaviors can vary group size and leverage individuals characteristics to form
the “ideal social group.”
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Finally, our work sheds light on virtual agents instantiation. Conversational agents struggle
with interrupting at appropriate times [67], and we foresee future systems leveraging turn-taking
predictions to decide whether and when to interject in natural and non-intrusive ways. Possible
application of virtual agents include teachers in classrooms, moderators in focus groups and
conferences, and facilitators in support groups.

5.2 Theoretical Implications of Turn-Taking Behaviors in VR
Understanding how features predict turn-taking behaviors offer practical benefits (e.g., smaller
models with curated features) and theoretical implications (RQ3). Here, we expand on the latter,
drawing parallels to past literature and supplementing them with post-hoc analysis.

The results on individual and group differences extend works demonstrating that personalities
such as extraversion, agreeableness, and neuroticism are correlated with user’s verbal behaviors
[6, 60]. As noted in Appendix C, features related to personalities and group sizes significantly
contributed to logistic regression models in at least one of the three tasks. Additionally, we found
that more extroverted listeners are predicted to more likely be the next speaker, corroborating past
findings that extraversion is related to speaking time [60] and speaking turns [6]. Our analysis
on group size suggested that listeners in three-person groups are more likely to be the next
speaker compared to listeners in four-person groups. Though we focused on individual feature
interpretation, it is also possible that models used group size in combination with motion-related
features for their predictions, as group size can be related to head orientations [32]. Another related
theoretical thread to consider regarding group size is how differences in group composition (e.g.,
personality, demographics) may affect social dynamics and psychological processes differently. For
example, larger groups, compared to smaller ones, tend to report lower levels of group identity and
greater role differentiation in performing group tasks, and consequently require more control from
leadership to coordinate efforts across group members [38]. As such, with many of the collaborative
activities participants engaged in within our dataset (see Appendix A for the list of discussion and
group activities), we imagine more drastic and fundamental differences in group behaviors, both
verbally and nonverbally, across group that greatly differ in size. While we studied three to four
person social groups, just how comparable and similar are turn-taking behaviors between groups
examined in this paper and those frommuch larger groups (e.g., over 10 people)? These findings and
considerations highlight the need to consider individual and group characteristics when predicting
social dynamics and instantiating virtual agents with distinct personas and natural behaviors. One
possible approach is to continue leveraging VR to study large and diverse demographics with high
variances in individual differences, and doing so in controlled settings [110].

Speech-related features exhibited high importance and salient effects on probability estimates
for the gradient boosting classifiers, and were also significant predictors for the logistic regressions.
Furthermore, our models predicted that those who more recently spoke, both in terms of speaking
turns and time, are more likely to be the next speaker. While we did not analyze speech sequence
features given the likely interactions between turn indices [85], it provided important signals to
predicting speech behaviors, in particular to next speaker prediction.
Our results revealed that group visual attention behavior is useful in distinguishing between

turn transition and continuing speech, with the individual that the group is looking more directly
towards predicted to be more likely the upcoming speaker. These findings extend past insights that
visual attention measurements are useful in modeling speech behaviors [49, 50] and classroom
discourse [102] by demonstrating that the social group’s direct visual attention towards individuals
is still predictive of the next speaker even when VR groups are not constrained to fixed virtual
positions. While features related to direct visual attention between the listener and previous speaker
were significant in predicting the next speaker in logistic regressions, they did not exhibit high
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importance for gradient boosting models. Nevertheless, these features could still offer insights on
speech behaviors when sampled at other moments, for example during speech events or immediately
after speaking turns.
Our models predicted that listeners who engaged in substantial rotation in head pitch (e.g.,

nodding, abruptly looking up or down) and moved their heads and left hands vertically upward
exhibited more speaking intentions. Our feature significance results largely echoed the importance
of these features. An additional analysis detailed in Appendix F on head pitch revealed that the
combination of high instantaneous speeds in both the upward and downward directions can be
further indicative of speaking intentions. We also found that the previous speaker’s left hand y-axis
position and the head y-axis position and pitch rotation influenced performance, though their
feature significance and effects on probability estimates are less consistent across tasks. Of note,
features related to the previous speaker’s left hand y-axis position were not significant in the
logistic regressions. Possible explanations include their potential interactions with other features
and non-linear contributions to the predictions. The inconsistency across tasks could be due to the
different roles the previous speaker plays in the tasks. For example, while the previous speaker’s
egocentric motion could help predict whether they will continue to speak, it is not informative for
predicting which listener will speak next. One explanation for the finding on left-hand motion is
its association with users raising their hands to access the menu, tablet, and audio button. These
findings corroborate past research demonstrating the predictive capabilities of tracking data for
modeling speech behavior [17, 44], and contribute insights on how egocentric motion is related to
the predicted behaviors.
Importantly, though our findings align with prior literature, feature interpretation can differ

across virtual context. Similar to how social factors such as group size and personality influenced
our model predictions, virtual context such as room size can also impact nonverbal behaviors
[35, 36]. Platform-specific characteristics such as the location of virtual menus could influence body
motion and visual attention preceding speech events. Though our dataset varied group size and
spatial context, model performance and interpretation may still differ when evaluated on novel
social settings.

6 Limitations and Future Work
Our work has several limitations. To start, we did not interpret features related to prior speech
sequences or incorporated features related to verbal transcripts. Works should examine how
virtual speech sequences differ from face-to-face ones and investigate how they predict turn-taking
dynamics. Researchers should also extract additional verbal features using transcripts, for example
features using Linguistic Inquiry and Word Count [107]. Relatedly, though we did not encode
virtual context characteristics, works should sample turn-taking behaviors in drastically-different
virtual spaces and curate approaches for parameterizing them. Researchers should also explore
whether incorporating gaze-related features enhances model performance since our dataset did not
contain them. To balance model performance, complexity, and interpretability, we used summary
statistics and standard machine learning models. We imagine works exploring other deep learning
architectures [117, 120] to capture additional nuances of group dynamics. Another avenue of future
work lies in benchmarking the real-time performance of these models and leveraging predictive
models to reduce miscommunication [2] and mitigate verbal harassment [25, 96].

In our dataset, students gathered in fixed groups using the same social VR platform and embodied
avatars that lacked nonverbal cues such as facial expressions. To fully evaluate model robustness,
researchers should examine different social platforms with varying levels of avatar representation
[100] and immersion [1], change group membership over time [93], and vary group sizes [36]. As
noted in Section 5.1.1, differences in group sizes beyond the scope of our paper could yield drastic
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differences in social dynamics and lower the applicability of our approach. Different activity types,
for example those varying in virtual mobility (e.g., scavenger hunt vs. discussion), could elicit similar
concerns. Future research should therefore probe the limits to improving performance through
naively scaling up data and sampling across a more diverse set of group interactions (e.g., group
size, activity type). It may also be necessary to consider different machine learning architectures
for modeling certain group activities, for example training expert sub-models to handle different
social scenarios before integrating them into for making predictions [61]. Doing so will not only
suggest technical improvements to the applicability of predicting turn-taking behaviors but also
built toward a better understanding of how VR contexts influence social dynamics.
One other limitation pertains to the dataset’s convenience sample of university students. To

investigate the generalizability of our insights, researcher should study more representative demo-
graphics. Additionally, discrepancies between virtual and physical motion (e.g., physically seated
users with standing virtual avatars) warrant scrutiny for their impact on turn-taking behaviors.
Finally, while we examined three turn-transition categories, we excluded backchanneling. As
backchanneling and overlap speech make up a key component to social dynamics [95] and have
unique challenges in CMC due to latencies and diminished nonverbal behaviors [98–100], works
should investigate overlapping speech, for example through predicting unwanted interruptions.

7 Conclusions
Being able to predict turn taking in VR affords opportunities for understanding immersive social
interactions and enables systems to administer support and intervention. In this work, we studied
turn-taking behaviors of student engaging in open-ended group activities in VR over four weeks.
We predicted turn-taking behaviors using features describing individual and group characteristics
and extracted features concerning speech-related behaviors, egocentric motion, and dyadic and
group relationships. We found that gradient boosting classifiers achieved the best performance,
considerably better than prediction by chance. Additional analysis revealed that listener personality,
group size, group visual attention, and listener and previous speaker’s head pitch, head y-axis
position, and left hand y-axis position were key features affecting performance and predictions. Our
results suggest that these features are reliable indicators, as models were robust when evaluated on
unseen activities, weeks, and groups. Taken together, our work contributed a better understanding
of how tracking data and individual and group characteristics can predict VR turn taking. We
believe our insights will motivate research on modeling social dynamics, and support practitioners
to use behavioral predictions to deliver assistance and training in facilitating immersive social
interactions.
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A Descriptions of Weekly Group Activities

Table 6. Descriptions of Weekly Group Discussion and Activities.

Week Topic Discussion Agenda Items & Prompts

1 Accessibility • Introduce yourself (i.e., name, year, major, what are youmost excited about learning
in this class, favorite thing you have done in VR)

• Talk through the preliminary ideas for your “Built VR world/scene” project
• Discuss accessibility within the context of ENGAGE (e.g., what are the constraints?)
• List things that ENGAGE does well vs. does not do well (e.g., using sticky notes)

2 Avatars • Consider the templates of storyboards we’ve provided for your storyboard assign-
ment. What are some elements you are considering including in your storyboard?
How do you plan on using the affordances unique to VR, such as presence, the
ability to move around in 3D space, spatialized sound, etc.? Are you planning on
showcasing this in your storyboard?

• Reimagine what your avatar would look like. Either draw an avatar that you wish
represents you or an avatar you would like to embody. This can, but doesn’t have
to, be a human avatar.

• Show-and-tell for created designs

3 Medical • Consider the medical applications we learned in the readings, class, and meditation
AltspaceVR journey. What was the most surprising, promising, or concerning?
How does this class change your perception of using VR for medical purposes?

• Collaboratively work with your group members to create a meditation room or a
safe space using any of the ENGAGE tools (e.g., 3D pen, IFX, sticky notes)

4 Education • Consider a target audience/population (e.g., students of a certain age group, stu-
dents with a certain learning disability, older students).

• Consider a goal (e.g., retaining factual information, having students experience
something)

• Consider a topic of interest (e.g., language, STEM, social skills)
• Empathize, define, ideate, and prototype an application tailored to your audience,
goal, and topic. Have a member of your group test out/role-play a student using
the application
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B Feature Importance for All Features

Fig. 6. Feature Importance Analysis. Each panel reports the change in AUC of the ROC after shuffling features
across the three prediction tasks for a given feature group. Black dots denote the average drop in accuracy
across three tasks. Features within each panel are ordered in increasing average drop in accuracy from top to
bottom. Bolded features and their corresponding rows with light blue backgrounds indicate features that are
further interpreted in Section 4.3. Diff. = differences; Ref. = reference user; prev. = previous; IPD = interpersonal
distance; attn. = visual attention; lh = left hand; rh = right hand.
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C Wald Tests for Logistic Regression Models
We present results from joint Wald-tests ran on the trained logistic regression models, specifically
the p values from the joint hypothesis tests that all features related to a specific construct do not
significantly contribute to the predictive model. The orders of the feature groups and constructs
follow that of Appendix B. Features with statistical significance, evaluated at 𝛼 = .05, are bolded.

Table 7. Results fromWald-tests on Speech-Related Features. We report the 𝑝 values
from the joint hypothesis tests. prev. = previous.

Turn Taking vs. Next Speaker Timing of
Continuing Speech Prediction Turn Taking

User has spoken <.001 <.001 .264
User turn count .046 <.001 .004
Prior speech sequence <.001 <.001 <.001
User prev. turn time <.001 .046 <.001

Table 8. Results from Wald-tests on Individual and Group Differences Features. We
report the 𝑝 values from the joint hypothesis tests. Ref. = reference user.

Turn Taking vs. Next Speaker Timing of
Continuing Speech Prediction Turn Taking

Ref. personality .020 <.001 <.001
Group personality .189 <.001 .191
Group size .001 <.001 .646
User personality .001 <.001 .189

Table 9. Results from Wald-tests on Dyad Features. We report the 𝑝 values from
the joint hypothesis tests. Ref. = reference user; IPD = interpersonal distance; attn. =
visual attention.

Turn Taking vs. Next Speaker Timing of
Continuing Speech Prediction Turn Taking

Dyad IPD .004 .066 .095
Dyad shared space .177 .096 .628
Dyad ref. to user attn. .846 <.001 .057
Dyad user to ref. attn. .246 <.001 .087
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Table 10. Results from Wald-tests on Group Features. We report the 𝑝 values from
the joint hypothesis tests. Ref. = reference user; IPD = interpersonal distance; attn. =
visual attention.

Turn Taking vs. Next Speaker Timing of
Continuing Speech Prediction Turn Taking

Group user IPD <.001 .588 .276
Ref. to group attn. <.001 <.001 .016
User to group attn. <.001 .298 .002
Group ref. IPD .009 .347 .056
Group user shared space .017 .982 .332
Group ref. shared space <.001 .784 .292
Group to user attn. <.001 .080 .007
Group to ref. attn. <.001 <.001 .070
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Table 11. Results from Wald-tests on Egocentric Features. We report the 𝑝 values
from the joint hypothesis tests. Ref. = reference user; prev. = previous; IPD = inter-
personal distance; attn. = visual attention; lh = left hand; rh = right hand.

Turn Taking vs. Next Speaker Timing of
Continuing Speech Prediction Turn Taking

Ref. rh rot pitch .028 .964 .297
Ref. lh rot pitch .195 .993 .014
Ref. rh pos x .143 .997 .007
User lh pos x .015 .181 .566
Ref. head pos z .018 .588 .505
Ref. rh rot yaw <.001 .984 .187
Ref. head pos x .154 .541 .190
Ref. head rot yaw .202 .823 .277
Ref. lh rot roll .252 .991 .766
Ref. lh rot yaw .470 .967 .197
Ref. rh pos y .493 .992 .103
User rh rot yaw .002 .017 .173
User head rot yaw .001 .590 .343
Ref. head rot roll .058 .947 .191
Ref. lh pos x .007 .994 .027
User lh rot roll .961 .316 .043
User rh rot pitch .564 .225 .665
User lh rot yaw .012 .052 .035
Ref. rh pos z .646 .999 .149
User rh pos z .080 .816 .595
User lh rot pitch .110 .161 .440
Ref. lh pos z .198 .977 .057
User lh pos z .185 .246 .021
User head pos x .111 .086 .054
Ref. rh rot roll <.001 .971 .090
User rh pos x .048 .215 .558
User head pos z .719 .052 .219
User head rot roll .003 <.001 <.001
User rh rot roll .002 <.001 .027
User rh pos y .035 .082 .230
Ref. head pos y <.001 .605 <.001
Ref. lh pos y .102 .942 .213
User lh pos y .002 .027 .087
Ref. head rot pitch <.001 .640 .040
User head pos y <.001 .015 <.001
User head rot pitch <.001 <.001 <.001
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D Additional Results on Model Predictions
In this section, we present additional analyses on prediction performance across sessions, groups,
and weeks. To do this, we first randomly split each of the three datasets, one for each task, into a
training set with 90% of the data and a testing set containing the remaining 10%. Then, we built
models on the training data and evaluated them on the testing set in three ways: across sessions,
groups, and weeks. Specifically, when evaluating across weeks, we calculated the average AUC and
standard error given the trained models’ performances across four test sets, each containing the
testing data from a specific week. We repeated this procedure for extracting the AUC and standard
errors of the models across sessions and groups. Note that the reported average AUC here gives
equal weight to each session, group, and week, which differs from the cross-validation evaluations
presented in Section 4.1.

Table 12. Model Performance (measured as the AUC of the ROC curve)
on Predicting Turn-Taking Behavior vs. Continuing Speech. We report
the average AUC and standard error on the testing set partitioned based
on sessions, groups, and weeks. An AUC of 0.50 means that the model’s
ability to distinguish between positive and negative samples is no better
than random chance. Bolded numbers denote best performance by met-
ric.

Performance Metrics

Prediction Model By Session By Group By Week

Logistic Regression 0.70 (0.02) 0.71 (0.02) 0.73 (0.01)
MLP Classifier 0.71 (0.02) 0.70 (0.02) 0.72 (0.02)
Random Forest Classifier 0.76 (0.01) 0.77 (0.01) 0.79 (0.01)
Gradient Boosting Classifier 0.80 (0.01) 0.81 (0.01) 0.82 (0.01)

Table 13. Model Performance (measured as the AUC of the ROC curve)
on Next Speaker Prediction. We report the average AUC and standard
error on the testing set partitioned based on sessions, groups, and weeks.
An AUC of 0.50 means that the model’s ability to distinguish between
positive and negative samples is no better than random chance. Bolded
numbers denote best performance by metric.

Performance Metrics

Prediction Model By Session By Group By Week

Logistic Regression 0.72 (0.02) 0.72 (0.02) 0.72 (0.01)
MLP Classifier 0.72 (0.02) 0.72 (0.02) 0.72 (0.01)
Random Forest Classifier 0.75 (0.02) 0.75 (0.02) 0.75 (0.00)
Gradient Boosting Classifier 0.75 (0.02) 0.76 (0.02) 0.77 (0.00)
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Table 14. Model Performance (measured as the AUC of the ROC curve)
on the Timing of Turn Taking. We report the average AUC and standard
error on the testing set partitioned based on sessions, groups, and weeks.
An AUC of 0.50 means that the model’s ability to distinguish between
positive and negative samples is no better than random chance. Bolded
numbers denote best performance by metric.

Performance Metrics

Prediction Model By Session By Group By Week

Logistic Regression 0.61 (0.02) 0.62 (0.02) 0.62 (0.01)
MLP Classifier 0.64 (0.01) 0.64 (0.02) 0.64 (0.021
Random Forest Classifier 0.69 (0.01) 0.68 (0.02) 0.69 (0.01)
Gradient Boosting Classifier 0.72 (0.02) 0.71 (0.02) 0.73 (0.01)
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E Additional Results on Predicting Continuing Speech and Next Speaker
While our formulation of turn-taking behavior prediction tasks regarded turn-taking behavior
vs. continuing speech and next speaker prediction as two individual tasks, we further present an
alternative task that aims to predict speaking intentions more generally. This task holds practical
importance as it addresses the broader question of forecasting who will speak next, be it speaker
continuation or a switch to a new speaker. Importantly, this task differs from that of turn-taking
behavior vs. continuing as the former seeks to distinguish between upcoming speakers and users
who will not speak, whereas the latter focuses on distinguishing between two types of upcoming
speakers.

Specifically, we defined positive samples as those sampled immediately preceding a continuing
speech or clean turn taking speech event. For clean turn-taking behaviors, we chose the main user
as the upcoming speaker and the previous speaker as the reference user. For samples correspond-
ing to continuing speech, we chose the upcoming speaker as both the main and reference user.
Negative samples were selected also at moments immediately preceding either a clean turn taking
or continuing speech event. For the negative samples, we set the reference user as the previous
speaker and the main user as one of the users who will not be the upcoming speaker. Across all
samples, when the main user and the reference user are chosen to be the same user, we set the
dyad-related features to zero after standardization. We down-ampled the training data such that
there is an equal number of positive and negative data. Similar to Section 4.1, we report in Table
15 the AUC for the four machine learning models across the performance metrics introduced in
Section 3.5.

We extended our binary classification models to multiclass prediction. Specifically, we evaluated
each instance before a turn-taking or continuing speech event to predict which group member,
including the current speaker, would speak next. Unlike our previous individual-based predictions,
this formulation focuses on group-level predictions. Using the trained binary models from the
previous step, we evaluated each user in the scene (i.e., chosen user as the main user, previous
speaker as the reference user) and selected the user with the highest probability of a positive label
as the predicted next speaker. Comparing the predictions with the true next speakers, we calculated
the testing data accuracy and further reported separately the accuracies of the testing data with
three-person groups and four-person groups. When presenting accuracies for cross-validation
evaluations, we also report their standard errors across all folds. Tables 16–18 summarize our
results.

Table 15. Binary Classification Model Performance (measured as the AUC of the
ROC curve) on Predicting Continuing and Speech Next Speaker. For metrics using
cross validation, which we denote using the subscript cv, we report the average
and standard error across all folds. An AUC of 0.50 means that the model’s ability
to distinguish between positive and negative samples is no better than random
chance. Bolded numbers denote best performance by metric.

Performance Metrics

Prediction Model Sessioncv Groupcv Weekcv Week 4

Logistic Regression 0.74 (0.01) 0.73 (0.01) 0.74 (0.01) 0.73
MLP Classifier 0.75 (0.00) 0.74 (0.01) 0.74 (0.01) 0.74
Random Forest Classifier 0.79 (0.00) 0.79 (0.01) 0.79 (0.01) 0.79
Gradient Boosting Classifier 0.82 (0.00) 0.81 (0.01) 0.82 (0.00) 0.81
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Table 16. Multiclass Classification on Continuing Speech and Next Speaker
Prediction using Session-Based Cross-Validation. We report accuracy across
testing samples and, in parenthesis, the standard errors of the accuracies
across all folds. Bolded numbers denote best performance by metric.

Performance Metric: Sessioncv
Prediction Model All Three-Person Four-Person

Logistic Regression 0.51 (0.01) 0.54 (0.01) 0.48 (0.01)
MLP Classifier 0.54 (0.01) 0.57 (0.01) 0.51 (0.01)
Random Forest Classifier 0.57 (0.01) 0.60 (0.01) 0.54 (0.01)
Gradient Boosting Classifier 0.62 (0.01) 0.65 (0.01) 0.59 (0.01)

Table 17. Multiclass Classification on Continuing Speech and Next Speaker
Prediction using Group-Based Cross-Validation. We report accuracy across
testing samples and, in parenthesis, the standard errors of the accuracies
across all folds. Bolded numbers denote best performance by metric.

Performance Metric: Groupcv
Prediction Model All Three-Person Four-Person

Logistic Regression 0.51 (0.01) 0.53 (0.02) 0.49 (0.02)
MLP Classifier 0.52 (0.01) 0.55 (0.01) 0.50 (0.02)
Random Forest Classifier 0.57 (0.01) 0.58 (0.02) 0.55 (0.02)
Gradient Boosting Classifier 0.61 (0.01) 0.63 (0.01) 0.59 (0.01)

Table 18. Multiclass Classification on Continuing Speech and Next Speaker
Prediction using Week-Based Cross-Validation. We report accuracy across
testing samples and, in parenthesis, the standard errors of the accuracies
across all folds. Bolded numbers denote best performance by metric.

Performance Metric: Weekcv
Prediction Model All Three-Person Four-Person

Logistic Regression 0.51 (0.01) 0.54 (0.01) 0.48 (0.01)
MLP Classifier 0.54 (0.01) 0.57 (0.01) 0.49 (0.00)
Random Forest Classifier 0.57 (0.01) 0.60 (0.01) 0.54 (0.00)
Gradient Boosting Classifier 0.62 (0.01) 0.65 (0.01) 0.58 (0.00)

As shown in Table 15, gradient boosting classifiers yielded the highest performance with an
AUC of 0.81–0.82 across the four performance metrics. Similar to results presented in Section 4.1,
the random forest classifiers yielded the second best performance with an AUC of 0.79, followed by
the MLP classifiers and the logistic regressions at 0.74–0.75 AUC and 0.73–0.74 AUC. Tables 16–18
revealed similar trends, namely that the gradient boasting classifiers yielded the highest accuracy
across all evaluation metrics (i.e., 59–65%). We also found that the accuracies among three-person
groups are higher than that for four-person groups. For reference, random chance predictions
would result in an accuracy of 33.33% for three-person groups and 25.00% for four-person groups.
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F Two-Variable Partial Dependence Plots for Maximum Upward and Downward Speed
for Head Pitch

Fig. 7. Two-Variable Partial Dependence Plots for Maximum Speed for Head Pitch. The y- and x- axes quantify
the maximum speed of the user looking downward and upward, respectively. The y-axis represents values
for the maximum head pitch velocity and the x-axis represents values for the minimum head pitch velocity.
We negated the original velocity values in the x-axis so that greater values in both axes represent greater
instantaneous rotation. The plotted values denote the average probability estimates after setting the two
features to their corresponding values based on their coordinates. Ref. = reference user.

Our results indicated that the extent to which an individual rotates their head in the pitch
axis (i.e., velocity upward, velocity downward) is helpful in predicting speaking intentions. To
understand how the features for upward head rotation (i.e., minimum head pitch velocity) and
downward head rotation (i.e., maximum head pitch velocity) are related, we created two-variable
partial dependence plots. Similar to the partial dependence plots we presented in Figures 4 and 5,
two-variable partial dependence is derived by first varying the values to the two features and then
calculating the average probability estimates of the trained model after this procedure.
Figure 7 shows the probability estimates after varying the extent of head pitch rotation for the

reference and main users across the three tasks. Notably, we see that for all tasks, the combination
of greater maximum speed in looking both upward and downward for the main user yielded higher
probability of main user speaking intentions. Visually, it also appears that the probability estimates
are noticeably higher when the maximum speeds for looking upward and downward are both
greater than ≈10 degrees per second. This suggests that motions that yield “high enough” values
of upward and downward pitch velocities (e.g., nodding) can be indicative of greater speaking
intentions. The reverse is true for the tasks of continuing speech vs. turn transition and timing
of turn transition regarding the previous speaker, with greater amount of upward and downward
head rotation for the previous speaker being associated with smaller probability estimates for the
main user’s speaking intentions. There was no distinct pattern observed for the previous speaker’s
head pitch velocities in predicting the next speaker.
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